Quantum Computing
Qubits and Logic Architectures
Communications
and Storage Theory
and Algorithms
Michael Chapman, Georgia Institute of Technology
Atlanta, Georgia
www.physics.gatech.edu/ultracool
Robert Clark, University of New South Wales
Sydney, Australia
www.phys.unsw.edu.au/STAFF/ACADEMIC/clark.html
David G. Cory, Massachusetts Institute of Technology
Cambridge, Massachusetts
mrix4.mit.edu/Cory/Cory.html
David Kielpinski, Massachusetts Institute of Technology
Cambridge, Massachusetts
web.mit.edu/physics/research/pappalardofellowshipsprogram/pappalardofellowsbios.html#kielpinski
Paul G. Kwiat, University of Illinois
Urbana-Champaign, Illinois
www.physics.uiuc.edu/People/Faculty/profiles/Kwiat
Daniel Lidar, University of Toronto
Toronto, Canada
qubit.chem.utoronto.ca/Lidar.html
Daniel Loss, University of Basel
Basel, Switzerland
theorie5.physik.unibas.ch/loss
Yuriy Makhlin, University of Karlsruhe
Karlsruhe, Germany
www-tfp.physik.uni-karlsruhe.de/~makhlin
Florian Meier, University of California, Santa Barbara
Santa Barbara, California
theorie5.physik.unibas.ch/meier
Terry P. Orlando, Massachusetts Institute of Technology
Cambridge, Massachusetts
www.rle.mit.edu/superconductivity
Eugene Polzik, University of Aarhus
Aarhus, Denmark
www.dfi.aau.dk/amo/qoptics/qoptics.htm
Mark Saffman, University of Wisconsin
Madison, Wisconsin
hexagon.physics.wisc.edu
Mark Sherwin, University of California, Santa Barbara
Santa Barbara, California
www.physics.ucsb.edu/People/person.php3?userid=sherwin
Jens Siewert, University of Regensburg
Regensburg, Germany
homepages.uni-regensburg.de/~sij05914
Jaw-Shen Tsai, NEC Research and RIKEN
Wako, Japan
www.riken.go.jp/engn/r-world/research/lab/frontier/quantum/coherence
K. Brigitta Whaley, University of California, Berkeley
Berkeley, California
www.cchem.berkeley.edu/~kbwgrp
David J. Wineland, National Institute of Standards and Technology
Boulder, Colorado
www.boulder.nist.gov/timefreq/ion
Peter Zoller, University of Innsbruck
Innsbruck, Austria
th-physik.uibk.ac.at/qo/zoller
What to Look For
Qubits and Logic:
Encoding information in logical qubits
Creating entanglement on demand
Qubits that last for whole seconds
Reliably transferring information from atoms to photons and back
Computers:
Fault-tolerant operation of a multi-qubit computer
10-qubit computer
100-qubit computer
1,000-qubit computer
A quantum computer that outperforms classical computers
Communications:
Electric, room-temperature single-photon sources
Efficient sources of entangled photons
Efficient room-temperature photon detectors
Quantum repeaters or relays
Algorithms:
Proof of a quantum speedup for route optimization-type problems
Proof of a quantum speedup for pattern recognition problems
Proof of a quantum speedup for simulating chaos
|