Quantum Cryptography
Systems   Theory   Single Photon Sources

Philippe Grangier, Institute of Optics
Orsay Cedex, France
www.iota.u-psud.fr/~grangier/Quantum_optics.html

Ataç Imamoglu, University of California at Santa Barbara
Santa Barbara, California
www.ece.ucsb.edu/Faculty/Imamoglu/default.html

Andrew Shields, Toshiba Cambridge Research Laboratory
Cambridge, England
www.toshiba-europe.com/research/crl/index.html

Yoshihisa Yamamoto, Stanford University
Palo Alto, California
stanford.edu/group/ginzton/faculty/yamamoto.html


What to Look For

Equipment and capabilities:

Electric, room-temperature single-photon sources
Gigahertz single-photon sources
Efficient sources of entangled photons
Gigahertz entangled-photon sources
Efficient room-temperature photon detectors
Gigahertz photon detectors
Quantum repeaters or relays
Gigahertz quantum repeaters
Multi-photon quantum cryptography

Implementations:

Gigabit-per-second point-to-point
Via satellite
On a network
On the Internet

Threat levels:

10-qubit quantum computer (practical quantum systems possible)
100-qubit quantum computer (large-scale within a decade)
1,000-qubit quantum computer (encryption codes compromised)



Suggest a researcher for consideration for TRN's Researchers to Watch.

Researcher's name:
Researcher's affiliation:
Researcher's Web site:
Your name and email (optional):
Home     Archive     Resources    Feeds     Glossary
   Contribute      T-shirts etc.     Ad Finder


© Copyright Technology Research News, LLC 2000-2005. All rights reserved.




Advertisements: