Crossed
nanowires compute
By
Eric Smalley,
Technology Research News
A simple calculator that adds binary numbers
may herald the end of computer chips as we know them.
Researchers at Harvard University assembled the rudimentary computer out
of nanowires 3,000 times finer than human hair using a simple manufacturing
process. The process could make computers that are small and cheap enough
to be built into everything from tires to wallpaper.
The nanowire design could be ready for practical use before today's silicon
technology loses out to the laws of physics in the quest to make smaller
and faster transistors.
The breakthrough was being able to form a transistor simply by crossing
two of the nanowires. A silicon nanowire carries electrical current when
a perpendicular galium nitride nanowire lowers the silicon nanowire's
electrical resistance, turning the transistor on.
"We have developed a... crossed-nanowire field effect transistor that
is readily amenable to high-density integration without the use of lithography,"
said Charles Lieber, a chemistry professor at Harvard University.
Today's computer
chips are made using photolithography,
a process that uses light and chemicals to etch lines into silicon wafers.
The process requires vacuum chambers, powerful lasers and hazardous chemicals,
which is why state-of-the-art chip factories tend to be billion-dollar
facilities.
The best photolithography techniques produce wires as narrow as 130 nanometers,
and fit 10 to 100 million transistors on a square centimeter of silicon.
The researchers' process will allow several orders of magnitude more transistors
to be crammed onto a chip than semiconductor technology is predicted to
provide even a decade from now, said Lieber.
The nanowire transistors could be packed one billion to a square centimeter,
and narrower nanowires would permit one trillion transistors per square
centimeter, he said.
Transistors are electronic switches that turn current on and off to represent
the ones and zeros of computing. The researchers combined nanowire transistors
to form several types of logic gates, which use these on and off states
to do calculations. They made simple logic gates that performed OR, AND
and NOR logic functions. An OR gate turns on if either or both of two
inputs are on, an AND gate turns on if both inputs are on, and a NOR gate
turns on if both inputs are off.
The researchers also combined these simple logic gates to form more complicated
logic units, including a half adder, which adds binary numbers together.
Computer processors are made of combinations of these more complicated
logic units.
The researchers built the transistors by chemically growing silicon and
galium nitride nanowires 10 to 30 nanometers in diameter and several microns
long. They coaxed the nanowires to form circuits by suspending them in
fluid and flowing the mixture across a surface. The tiny wires line up
in the direction of the flow. They placed the silicon nanowires in one
direction and the galium nitride nanowires in a perpendicular direction.
Simply putting the wires in place was enough to assemble the gates: the
nanowires are so small that atomic forces make them stick when they touch.
Semiconductor nanowires make good computer chip building blocks because
their long, narrow shape and good electronic properties enable them to
be used both as wiring and to make functional devices like transistors,
said Lieber. The researchers' nanowire transistors boost electrical signals
as they pass through, which makes it possible for many of them to be connected
without the signal fading away.
Though the researchers were able to build the logic gates chemically,
they had to connect groups of gates using lithographically-formed electrodes,
and they had to position the nanowire logic gates on the electrodes by
hand. The researchers are currently working on assembling the nanowires
directly on the electrodes, said Lieber.
They are also looking to connect the logic units nanowire-to-nanowire,
which would make it possible to build entire computer chips using only
the chemical assembly technique, he said.
Ultimately, chip factories could boil down to microscopic channels and
reservoirs. "In the alignment and placement phase of nanowires... microfluidic
machines [could be] the critical fabrication-line tool," said Lieber.
The results are exciting because the researchers coaxed transistors to
self-assemble, said James S. Harris, an electrical engineering professor
at Stanford University. "The most exciting result is that they could deposit
these wires in an interconnected 3-D matrix, creating a true 3-D integrated
circuit."
However, the researchers will have to use a different chip architecture
than the one used by today's computer chips, said Harris. Their architecture
will have to be very highly parallel because the nanowires have high electrical
resistance, which means circuits made from them will operate at relatively
low clock rates compared to today's integrated circuits. "It will win
only by extremely high density and parallelism, not speed," he said.
The nanowire process should be able to produce complicated integrated
circuit devices in 5 to 10 years, said Lieber.
Lieber's research colleagues were Yu Huang, Xiangfeng Duan, Yi Cui, Lincoln
J. Lauhon and Kyoung-Ha Kim of Harvard. They published the research in
the November 9, 2001 issue of the journal Science. The research was funded
by the Office of Naval Research and the Defense Advanced Research Projects
Agency (DARPA).
Timeline: 5-10 years
Funding: Government
TRN Categories: Nanotechnology; Integrated Circuits; Materials
Science and Engineering
Story Type: News
Related Elements: Technical paper, "Logic Gates and Computation
from Assembled Nanowire Building Blocks," Science, November 9, 2001
Advertisements:
|
November
14, 2001
Page
One
Crossed nanowires compute
Disappearing links
shape networks
Stored light altered
Flipping flakes change
color
Evolution optimizes
satellite orbits
News:
Research News Roundup
Research Watch blog
Features:
View from the High Ground Q&A
How It Works
RSS Feeds:
News | Blog
| Books
Ad links:
Buy an ad link
Advertisements:
|
|
|
|