Bent
wires make cheap circuits
By
Kimberly Patch,
Technology Research News
Today's computers use the presence or absence
of a flow of electrons to represent the ones and zeros of binary logic,
and they detect this current by sensing electrical charge. There's more
to electrons than charge, however. They also have spin, a magnetic property
similar to the two poles of an ordinary refrigerator magnet.
Magnetic spin is already used to store information in the microscopic
bits of disk drives and in a recently-developed magnetic memory chip.
Using spin to compute as well would pave the way for all-magnetic, cheap,
low-power computers. And because the spin states of electrons remain stable
even when the power goes off, such a computer would not have to boot up
every time it is turned on.
Current spintronics efforts generally focus on using spin to carry out
the logic operations of computing by moving electrons around while preserving
their spins.
Another way to move a spin signal, however, is to find a way to ripple
the signal through a series of stationary electrons, similar to the way
a row of dominos affects each other. Carrying out the logic operations
of computing this way requires moving the magnetic domain wall -- the
region along a wire where magnetization changes direction -- through a
series of logic circuits.
Researchers from Durham University in England have taken a large step
in this direction by constructing a NOT gate -- one the basic logic circuits
of computers -- that carries out a computation using the spin of electrons.
"You replace the high-voltage/low-voltage representation of the numbers
one and zero with North pole/South pole," said Russell Cowburn, a lecturer
in physics at Durham University.
Information flows when a spin flips its direction, and then causes its
neighbors to flip. "Instead of sending voltage... around the chip, you
send magnetic domain walls," said Cowburn.
A NOT gate changes an input signal to its opposite; when a one goes through
a NOT gate it comes out as a zero, and vice versa. "The NOT gate is just
a nanoscale magnetic wire that is [bent] into a hairpin so that as the
domain wall moves around it, the magnetization direction is reversed,"
said Cowburn. The path that reverses the direction of magnetization is
similar to the path a car takes when it does a K-turn to reverse direction.
The researchers designed the logic circuit after realizing that they could
drive domain walls around a tiny magnetic circuit using a rotating magnetic
field, said Cowburn. "We found that the sense of rotation -- clockwise
or counter-clockwise -- is really important and can be used to give you
immense control over the flow of information," said Cowburn.
To fabricate such circuits, the researchers had to make extremely small,
smooth wires. "We had to perform some very accurate metal fabrication
-- making magnetic wires with edges that are smooth to within 10 or 20
nanometers," Cowburn said. A nanometer is one millionth of a millimeter,
or about the size of a line of 10 carbon atoms.
In order to see that the circuit was working, the researchers had to find
a way to measure whether the signal had changed. They developed a laser
that measures magnetic signals the same way an oscilloscope measures electric
signals. "You just drop the laser beam onto the part of the spintronics
circuit that you want to probe, and the magnetic waveform appears on the
computer screen," said Cowburn.
The researchers also built a larger circuit consisting of 11 NOT gates
to show that the gates can be linked together. The circuits formed a shift
register, which computers use to change the position of a series of binary
digits. Shifting the number 100 one place to the left, for example, yields
1000. Shifting it one place to the right yields 10.
The researchers are currently working on an AND gate, which has two or
more inputs, and returns a one rather than a zero only if all of the inputs
are one. The NOT and AND gates are the basic building blocks of computer
logic. "Once we've got [the AND gate] we could build any circuits that
could be built from conventional digital logic," said Cowburn.
Ultimately, the researchers are aiming to make a spin-based computer chip
that "does all the things that conventional electronic chips do, but with
the cost, power, size and non-volatility advantages that come from magnetic
logic," said Cowburn.
The researchers' spin design can potentially make for extremely small
chips that are relatively inexpensive to manufacture because the circuits
are made from single wires rather than semiconductor transistors, said
Cowburn. Semiconductors are shaped using chemicals and light to peel away
layers of material. The researchers devices, however, can be made from
a single layer, eliminating the need to align multiple layers, which is
one of the costliest processes in chip manufacture.
The simpler wire-based circuit design is also a good candidate for self-assembly
processes, where materials are built molecule-by-molecule using mixes
of chemicals, similar to the way biological organisms are made. Eventually,
"it should be possible to shrink the devices to much smaller sizes --
possibly close to the atomic scale," Cowburn said.
The amount of power needed to shunt domain walls around would be considerably
less than is needed for electrical current, making spin circuits potentially
useful for small mobile devices like phones and smart cards, said Cowburn.
"The ballpark is in the range [of] 100 to 1000 times lower power," he
said.
In the distant future the devices could be implanted inside the human
body to, for example, monitor biological functions, he said. The devices
would require so little power they could be supplied from a small electric
coil placed outside of the body that would surround the spin circuits
with an electromagnetic field, rather than having to wire it directly
to a power source, according to Cowburn.
The research is an interesting twist on well-established physics, according
to Jay Kikkawa, an assistant professor of physics at the University of
Pennsylvania. "While it is known that magnetic fields can transmit a wall
from one end of a wire to the other, the authors show that the shape of
the wire can invert the wall en route," he said.
What is needed next are similar geometrical concepts that can be used
to form more complicated logic gates, according to Kikkawa. "With a few
additional innovations, computing elements could be constructed for certain
non-volatile applications. I'm particularly interested to see how the
fidelity of these gates will hold up at higher gate speeds and densities,"
he said.
Simple spin devices could be made practical within the next two years,
Cowburn said. "More complicated devices will take a little longer -- probably
five years," he said.
Cowburn's research colleagues were Dan A. Allwood, Xiong Gang, Michael
D. Cooke, Del Atkinson, Colm C. Faulkner and Nicolas Vernier. They published
the research in the June 14, 2002 issue of the journal Science. The research
was funded by the private engineering investment company.
Timeline: 2-5 years
Funding: Corporate
TRN Categories: Integrated Circuits, Physics, Spintronics
Story Type: News
Related Elements: Technical paper, "Submicrometer Ferromagnetic
NOT Gate and Shift Register," Science, June 14, 2002.
Advertisements:
|
June
26/July 3, 2002
Page
One
PCs augment reality
Stamps bang out tiny
silicon lines
Bent wires make cheap
circuits
Mixes make tiniest
transistors
Plastic computer
memory advances
News:
Research News Roundup
Research Watch blog
Features:
View from the High Ground Q&A
How It Works
RSS Feeds:
News | Blog
| Books
Ad links:
Buy an ad link
Advertisements:
|
|
|
|